Evaluation of uncertainty predictions and dose output for model-based dose calculations for megavoltage photon beams.
نویسندگان
چکیده
In many radiotherapy clinics an independent verification of the number of monitor units (MU) used to deliver the prescribed dose to the target volume is performed prior to the treatment start. Traditionally this has been done by using methods mainly based on empirical factors which, at least to some extent, try to separate the influence from input parameters such as field size, depth, distance, etc. The growing complexity of modern treatment techniques does however make this approach increasingly difficult, both in terms of practical application and in terms of the reliability of the results. In the present work the performance of a model-based approach, describing the influence from different input parameters through actual modeling of the physical effects, has been investigated in detail. The investigated model is based on two components related to megavoltage photon beams; one describing the exiting energy fluence per delivered MU, and a second component describing the dose deposition through a pencil kernel algorithm solely based on a measured beam quality index. Together with the output calculations, the basis of a method aiming to predict the inherent calculation uncertainties in individual treatment setups has been developed. This has all emerged from the intention of creating a clinical dose/MU verification tool that requires an absolute minimum of commissioned input data. This evaluation was focused on irregular field shapes and performed through comparison with output factors measured at 5, 10, and 20 cm depth in ten multileaf collimated fields on four different linear accelerators with varying multileaf collimator designs. The measurements were performed both in air and in water and the results of the two components of the model were evaluated separately and combined. When compared with the corresponding measurements the resulting deviations in the calculated output factors were in most cases smaller than 1% and in all cases smaller than 1.7%. The distribution describing the calculation errors in the total dose output has a mean value of -0.04% and a standard deviation of 0.47%. In the dose calculations a previously developed correction of the pencil kernel was applied that managed to contract the error distribution considerably. A detailed analysis of the predicted uncertainties versus the observed deviations suggests that the predictions indeed can be used as a basis for creating action levels and tracking dose calculation errors in homogeneous media.
منابع مشابه
Evaluation of Electron Contamination in Cancer Treatment with Megavoltage Photon Beams: Monte Carlo Study
Background: Megavoltage beams used in radiotherapy are contaminated with secondary electrons. Different parts of linac head and air above patient act as a source of this contamination. This contamination can increase damage to skin and subcutaneous tissue during radiotherapy. Monte Carlo simulation is an accurate method for dose calculation in medical dosimetry and has an important role in opt...
متن کاملCalculating Weighting Factors for Mixing Megavoltage Photon Beams to Achieve Desirable Dose Distribution in Radiotherapy
Background: In radiotherapy, low-energy photon beams are better adapted to the treated volume, and the use of high-energy beams can reduce hot spots in the radiation therapy. Therefore, mixing low and high energies with different ratios can control the rate of hotspots, as well as the dose distribution of the target volume.Material and Methods: The percentage depth doses (PDDs) were calculated ...
متن کاملDosimetric comparison between XR-RV3 and EBT2 radiochromic film in megavoltage photon beams
Background: Radiochromic film is used for radiation dose measurement, XR-RV3 is used in fluoroscopy and EBT2 film in radiation therapy. The aim was to determine if the dosimetric properties of these two films are comparable in megavolt photon beams. Materials and Methods: Comparison measurements included: calibration curves, heterogeneous phantom dose profiles, and nasopharynx dose distributio...
متن کاملCalculating weighting factors for mixing megavoltage photon beams to achieve desirable dose distribution in Radiotherapy
Introduction: Many studies have shown the effects of delivered dose distribution due to the incident photon energy on the tumor and healthy tissues. The ability to access the most appropriate radiation energy is essential to achieve the optimal treatment planning but there is a serious limitation in number of energies available on radiation therapy machines can restrict it. <s...
متن کاملEvaluation of MRI-based MAGIC polymer gel dosimeter in small photon fields
Background: Accurate small radiation field dosimetry is essential in modern radiotherapy techniques such as stereotactic radiosurgery (SRS) and intensity modulated radiotherapy (IMRT). Precise measurement of dosimetric parameters such as beam profile, percentage depth doses and output factor of these beams are complicated due to the electron disequilibrium and the steep dose gradients. In the p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical physics
دوره 33 7 شماره
صفحات -
تاریخ انتشار 2006